资讯

2022年中考数学必考34个考点专题17:等腰、等边三角形问题

专题17 等腰、等边三角形问题


一、等腰三角形
1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角.
2.等腰三角形的性质
性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
3.等腰三角形的性质的作用
性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.
性质2用来证明线段相等,角相等,垂直关系等.
4.等腰三角形是轴对称图形
等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.
5.等腰三角形的判定
如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
    要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.
二、等边三角形
1. 定义:三边都相等的三角形叫等边三角形.
2. 性质
性质1:等边三角形的三个内角都相等,并且每一个角都等于60°;
性质2:等边三角形是轴对称图形,并且有三条对称轴,分别为三边的垂直平分线。
3.判定
(1) 三个角都相等的三角形是等边三角形;
(2) 有一个角是60°的等腰三角形是等边三角形;
(3) 有两个角是60°的三角形是等边三角形。
三、含30的直角三角形的性质
在直角三角形中,如果有一个锐角等于30°,那么它对的等于的一半.
四、解题方法要领
1.等腰(边)三角形是一个特殊的三角形,具有较多的特殊性质,有时几何图形中不存在
等腰(边)三角形,可根据已知条件和图形特征,适当添加辅助线,使之构成等腰(边)三角形,然后利用其定义和有关性质,快捷地证出结论。
2.常用的辅助线有:(1)作顶角的平分线、底边上的高线、中线。(2)在三角形的中线问
题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是根据边是腰还是底来分类。


【例题1】(2019•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.

【答案】见解析。
【解析】(1)∵AB=AC,∴∠C=∠ABC,
∵∠C=36°,∴∠ABC=36°,
∵BD=CD,AB=AC,
∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC,
∵EF∥BC,∴∠FEB=∠CBE,
∴∠FBE=∠FEB,∴FB=FE.

【例题2】(2019▪黑龙江哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD.CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为     .

【答案】2
【解析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.如图,连接AC交BD于点O

∵AB=AD,BC=DC,∠A=60°,
∴AC垂直平分BD,△ABD是等边三角形
∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4
∵CE∥AB
∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°
∴∠DAO=∠ACE=30°
∴AE=CE=6,∴DE=AD﹣AE=2
∵∠CED=∠ADB=60°
∴△EDF是等边三角形,∴DE=EF=DF=2
∴CF=CE﹣EF=4,OF=OD﹣DF=2
∴OC==2
∴BC==2
【例题3】(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=(  )

A.125° B.145° C.175° D.190°
【答案】C
【解析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.
∵CD⊥AB,F为边AC的中点,
∴DF=AC=CF,
又∵CD=CF,
∴CD=DF=CF,
∴△CDF是等边三角形,
∴∠ACD=60°,
∵∠B=50°,
∴∠BCD+∠BDC=130°,
∵∠BCD和∠BDC的角平分线相交于点E,
∴∠DCE+∠CDE=65°,
∴∠CED=115°,
∴∠ACD+∠CED=60°+115°=175°,
故选:C.



一、选择题
1.(2019宁夏) 如图,在△ABC中,,点D和E分别在AB和AC上,且.连接DE,过点A的直线GH与DE平行,若,则的度数为(     ).
A.               B.               C.             D. 
   
【答案】C
【解析】】平行线的性质、等腰三角形的性质.
因为,所以,因为,所以,因为,所以,故本题正确选项为C.
2.(2019•浙江衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示的“三等分角仪”能三等分任一角。这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是(     ) 
 
A. 60°                              B. 65°                           C. 75°                                D. 80°
【答案】 D  
【解析】考点是三角形内角和定理,三角形的外角性质,等腰三角形的性质 。  
∵OC=CD=DE,
∴∠O=∠ODC,∠DCE=∠DEC,
设∠O=∠ODC=x,
∴∠DCE=∠DEC=2x,
∴∠CDE=180°-∠DCE-∠DEC=180°-4x,
∵∠BDE=75°,
∴∠ODC+∠CDE+∠BDE=180°,
即x+180°-4x+75°=180°,
解得:x=25°,
∠CDE=180°-4x=80°.
3.(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是(  )

A.20°      B.30°      C.45°   D.60°
【答案】B
【解析】在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°﹣∠B﹣∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC﹣∠DAB=30°
4.(2019•湖南长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是(  )

A.2 B.4 C.5 D.10
【答案】B
【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.
如图,作DH⊥AB于H,CM⊥AB于M.

∵BE⊥AC,∴∠ABE=90°,
∵tanA==2,设AE=a,BE=2a,
则有:100=a2+4a2,∴a2=20,
∴a=2或﹣2(舍弃),∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AC,
∴CM=BE=4(等腰三角形两腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,
∴sin∠DBH===,∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,∴CD+BD≥4,
∴CD+BD的最小值为4.
5.(2019•湖南邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于(  )

A.120° B.108° C.72° D.36°
【答案】B
【解析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.
∵在Rt△ABC中,∠BAC=90°,∠B=36°,
∴∠C=90°﹣∠B=54°.
∵AD是斜边BC上的中线,
∴AD=BD=CD,
∴∠BAD=∠B=36°,∠DAC=∠C=54°,
∴∠ADC=180°﹣∠DAC﹣∠C=72°.
∵将△ACD沿AD对折,使点C落在点F处,
∴∠ADF=∠ADC=72°,
∴∠BED=∠BAD+∠ADF=36°+72°=108°.
二、填空题
6.(2019•湖南怀化)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为  .
【答案】36°.
【解析】根据等腰三角形的性质和三角形的内角和即可得到结论.
∵等腰三角形的一个底角为72°,
∴等腰三角形的顶角=180°﹣72°﹣72°=36°
7.(2019•湖南邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是  .

【答案】(﹣2,﹣2).
【解析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.
作BH⊥y轴于H,如图,
∵△OAB为等边三角形,
∴OH=AH=2,∠BOA=60°,
∴BH=OH=2,
∴B点坐标为(2,2),
∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,
∴点B′的坐标是(﹣2,﹣2).
故答案为(﹣2,﹣2).

8.(2019•湖北天门)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为     m.

【答案】14.4.
【解析】作DE⊥AB于E,如图所示:
则∠AED=90°,四边形BCDE是矩形,
∴BE=CD=9.6m,∠CDE=∠DEA=90°,
∴∠ADC=90°+30°=120°,
∵∠ACB=60°,∴∠ACD=30°,
∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,
在Rt△ADE中,∠ADE=30°,
∴AE=AD=4.8m,
∴AB=AE+BE=4.8m+9.6m=14.4m

9.(2019▪贵州毕节)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为      .

【答案】34°.
【解析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.
∵∠B=40°,∠C=36°,
∴∠BAC=180°﹣∠B﹣∠C=104°
∵AB=BD
∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,
∴∠DAC=∠BAC﹣∠BAD=34°
10. (2019•湖北武汉)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为     .

【答案】21°.
【解析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.
设∠ADE=x,
∵AE=EF,∠ADF=90°,
∴∠DAE=∠ADE=x,DE=AF=AE=EF,
∵AE=EF=CD,
∴DE=CD,
∴∠DCE=∠DEC=2x,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠BCA=x,
∴∠DCE=∠BCD﹣∠BCA=63°﹣x,
∴2x=63°﹣x,
解得:x=21°,
即∠ADE=21°.
11.(2019黑龙江绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=______度.

【答案】16
【解析】∵BD=AD,设∠A=∠ABD=x,∴∠BDC=2x,∵BD=BC,∴∠C=∠BDC=2x,∵AB=AC,∴∠ABC=∠C=2x,∴x+2x+2x=180°,∴x=36°.
三、解答题
12.(2019湖北孝感)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.

【答案】见解析。
【解析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.
证明:∵∠C=∠D=90°,
∴△ACB和△BDA是直角三角形,
在Rt△ACB和Rt△BDA中,,
∴Rt△ACB≌Rt△BDA(HL),
∴∠ABC=∠BAD,
∴AE=BE.
13.(2019•杭州)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.

【答案】见解析。
【解析】(1)证明:∵线段AB的垂直平分线与BC边交于点P,
∴PA=PB,∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,∴∠APC=2∠B;
(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,
∵∠BAQ+∠BQA+∠B=180°,
∴5∠B=180°,∴∠B=36°.
14.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.

【答案】见解析。
【解析】(1)∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,∠ADC=90°,
又∠C=42°,
∴∠BAD=∠CAD=90°﹣42°=48°;
(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,
∵EF∥AC,
∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.
15.(2019•南岸区)如图,直线AB∥CD,∠ACD的平分线CE交AB于点F,∠AFE的平分线交CA延长线于点G.
(1)证明:AC=AF;
(2)若∠FCD=30°,求∠G的大小.

【答案】见解析。
【解析】(1)证明:∵∠ACD的平分线CE交AB于点F,
∴∠ACF=∠DCF,
∵AB∥CD,
∴∠AFC=∠DCF,
∴∠ACF=∠AFC,
∴AC=AF;
(2)解:∵∠FCD=30°,AB∥CD,
∴∠ACD=∠GAF=60°,∠AFC=30°,
∵∠AFE的平分线交CA延长线于点G.
∴=75°,
∴∠G=180°﹣∠GAF﹣∠AFG=180°﹣60°﹣75°=45°.
16.(2019•攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:
(1)点D在BE的垂直平分线上;
(2)∠BEC=3∠ABE.

【答案】见解析。
【解析】(1)连接DE,
∵CD是AB边上的高,∴∠ADC=∠BDC=90°,
∵BE是AC边上的中线,∴AE=CE,∴DE=CE,
∵BD=CE,∴BD=DE,
∴点D在BE的垂直平分线上;
(2)∵DE=AE,∴∠A=∠ADE,
∵∠ADE=∠DBE+∠DEB,
∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,
∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.

17.(2019•湖北十堰)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AB=3BD,CE=2,求⊙O的半径.

【答案】见解析。
【解析】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.
(1)如图,连接OD,AD,
∵AC是直径,
∴∠ADC=90°,
∴AD⊥BC,
∵AB=AC,
∴∠CAD=∠BAD=∠BAC,
∵∠CDE=∠BAC.
∴∠CDE=∠CAD,
∵OA=OD,
∴∠CAD=∠ADO,
∵∠ADO+∠ODC=90°,
∴∠ODC+∠CDE=90°
∴∠ODE=90°
又∵OD是⊙O的半径
∴DE是⊙O的切线;
(2)解:∵AB=AC,AD⊥BC,
∴BD=CD,
∵AB=3BD,
∴AC=3DC,
设DC=x,则AC=3x,
∴AD==2x,
∵∠CDE=∠CAD,∠DEC=∠AED,
∴△CDE∽△DAE,
∴=,即==
∴DE=4,x=,
∴AC=3x=14,
∴⊙O的半径为7.

18.(2019•甘肃武威)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.
(1)求证:AC是⊙D的切线;
(2)若CE=2,求⊙D的半径.

【答案】见解析。
【解析】连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.
(1)证明:连接AD,
∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,
∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,
∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;
(2)解:连接AE,
∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,
∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,
∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.

19. (2019•湖南衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.
(1)当t为何值时,△BPQ为直角三角形;
(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;
(3)求DE的长;
(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.

【答案】见解析。
【解析】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
(1)∵△ABC是等边三角形,
∴∠B=60°,
∴当BQ=2BP时,∠BPQ=90°,
∴6+t=2(6﹣t),∴t=3,
∴t=3时,△BPQ是直角三角形.
(2)存在.
理由:如图1中,连接BF交AC于M.

∵BF平分∠ABC,BA=BC,
∴BF⊥AC,AM=CM=3cm,
∵EF∥BQ,
∴∠EFM=∠FBC=∠ABC=30°,
∴EF=2EM,
∴t=2•(3﹣t),
解得t=3.
(3)如图2中,作PK∥BC交AC于K.

∵△ABC是等边三角形,∴∠B=∠A=60°,
∵PK∥BC,
∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,
∴△APK是等边三角形,∴PA=PK,
∵PE⊥AK,∴AE=EK,
∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,
∴△PKD≌△QCD(AAS),∴DK=DC,
∴DE=EK+DK=(AK+CK)=AC=3(cm).
(4)如图3中,连接AM,AB′

∵BM=CM=3,AB=AC,∴AM⊥BC,
∴AM==3,
∵AB′≥AM﹣MB′,∴AB′≥3﹣3,
∴AB′的最小值为3﹣3.


获得更多试题及答案,欢迎联系微信公众号:ygjjcom

上一篇: 2020年中考数学必考34个考点专题33:最值问题 下一篇: 2020年中考历史考点17:现代科技文化与社会生活

你可能感兴趣的教员

您可能感兴趣的试题

©阳光家教网版权所有    电脑版
webchat客服微信号:ygjjcom
首页 学员发布 更多