2019年普通高等学校招生全国统一考试文科数学
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分,在每小题给的四个选项中,只有一项是符合题目要求的.
1.已知集合,则( )
A. B. C. D.
【答案】A
【解析】
【分析】
先求出集合B再求出交集.
【详解】由题意得,,则.故选A.
【点睛】本题考查了集合交集的求法,是基础题.
2.若,则( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据复数运算法则求解即可.
【详解】.故选D.
【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. B. C. D.
【答案】D
【解析】
【分析】
男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.
【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.
【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据题先求出阅读过西游记的人数,进而得解.
【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.
【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.
5.函数在的零点个数为( )
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
【分析】
令,得或,再根据x的取值范围可求得零点.
【详解】由,得或,,.在零点个数是3..故选B.
【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.
6.已知各项均为正数的等比数列的前4项和为15,且,则( )
A. 16 B. 8 C. 4 D. 2
【答案】C
【解析】
【分析】
利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值.
【详解】设正数的等比数列{an}的公比为,则,
解得,,故选C.
【点睛】应用等比数列前项和公式解题时,要注意公比是否等于1,防止出错.
7.已知曲线在点处的切线方程为,则( )
A. B. C. D.
【答案】D
【解析】
【分析】
通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.
【详解】详解:
将代入得,故选D.
【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.
8.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则( )
A. ,且直线是相交直线
B. ,且直线是相交直线
C. ,且直线是异面直线
D. ,且直线是异面直线
【答案】B
【解析】
分析】
利用垂直关系,再结合勾股定理进而解决问题.
【详解】,为中点为中点,,共面相交,选项C,D为错.作于,连接,过作于.
连,平面平面.
平面,平面,平面,
与均为直角三角形.
设正方形边长为2,易知,
.
,故选B.
【点睛】本题为立体几何中等问题,考查垂直关系,线面、线线位置关系.
9.执行如图所示的程序框图,如果输入的为,则输出的值等于( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据程序框图,结合循环关系进行运算,可得结果.
【详解】不成立
不成立
成立
输出,故选D.
【点睛】循环运算,何时满足精确度成为关键,加大了运算量,输出前项数需准确,此为易错点.
10.已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为( )
A. B. C. D.
【答案】B
【解析】
分析】
设,因为再结合双曲线方程可解出,再利用三角形面积公式可求出结果.
【详解】设点,则①.又,②.由①②得,即,.故选B.
【点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.
11.记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是( )
A. ①③ B. ①② C. ②③ D. ③④
【答案】A
【解析】
【分析】
根据题意可画出平面区域再结合命题可判断出真命题.
【详解】如图,平面区域D为阴影部分,由得即A(2,4),直线与直线均过区域D,则p真q假,有假真,所以①③真②④假.故选A.
【点睛】本题考点为线性规划和命题的真假,侧重不等式的判断,有一定难度.不能准确画出平面区域导致不等式误判,根据直线的斜率和截距判断直线的位置,通过直线方程的联立求出它们的交点,可采用特殊值判断命题的真假.
12.设是定义域为的偶函数,且在单调递减,则( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.
【详解】是R的偶函数,.
,又在(0,+∞)单调递减,,
,故选C.
【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力.
获得更多试题及答案,欢迎联系微信公众号:ygjjcom
上一篇: 2019年高考真题——文科数学(全国卷II)含解析 下一篇: 2019年高考真题——文科数学(全国卷Ⅲ)含答案